Math 4550 - Homework # 4 - Homomorphisms

Part 1 - Computations

- 1. Let $\phi : \mathbb{Z} \to \mathbb{Z}$ be given by $\phi(x) = 3x$.
 - (a) Draw a picture of ϕ .
 - (b) Find the kernel of ϕ and the image of ϕ and add them to your picture.
 - (c) Prove that ϕ is a homomorphism.
 - (d) Prove that ϕ is one-to-one but not onto.
- 2. Let $\phi: \mathbb{R}^* \to \mathbb{R}^*$ be given by $\phi(x) = x^3$.

Recall that \mathbb{R}^* is a group under multiplication.

- (a) Draw a picture of ϕ .
- (b) Find the kernel of ϕ and the image of ϕ and add them to your picture.
- (c) Prove that ϕ is an isomorphism.
- 3. Let $\phi: GL(2,\mathbb{R}) \to \mathbb{R}^*$ be given by $\phi(A) = \det(A)$.
 - (a) Draw a picture of ϕ .
 - (b) Prove that ϕ is a homomorphism.
 - (c) Prove that ϕ is onto, but that it is not one-to-one.
 - (d) Find the kernel of ϕ and the image of ϕ .
- 4. Suppose that $\phi: \mathbb{Z} \to \mathbb{Z}$ is a homomorphism such that $\phi(1) = 5$.
 - (a) Find $\phi(4)$.
 - (b) Find $\phi(-1)$.
 - (c) Find $\phi(-3)$.

Part 2 - Proofs

- 5. Let G_1 and G_2 be groups and $\phi: G_1 \to G_2$ be a homomorphism.
 - (a) Prove that if G_1 is abelian and ϕ is onto, then G_2 is abelian.
 - (b) Prove that \mathbb{Z}_6 is not isomorphic to D_6 .
 - (c) Prove that if G_1 is cyclic and ϕ is onto, then G_2 is cyclic.
 - (d) Prove that \mathbb{Z}_4 is not isomorphic to $\mathbb{Z}_2 \times \mathbb{Z}_2$

- 6. Let G_1 and G_2 be groups with identity elements e_1 and e_2 respectively. Let $\phi: G_1 \to G_2$ be a homomorphism.
 - (a) Show that $\phi(e_1) = e_2$.
 - (b) Show that $\phi(x^{-1}) = [\phi(x)]^{-1}$ for all $x \in G_1$.
 - (c) Show that $ker(\phi)$ is a subgroup of G_1 .
 - (d) Show that $im(\phi) = {\{\phi(x) \mid x \in G\}}$ is a subgroup of G_2 .
 - (e) Show that ϕ is one-to-one if and only if $\ker(\phi) = \{e_1\}$.
 - (f) Show that ϕ is onto if and only if $im(\phi) = G_2$.
- 7. Let G_1 , G_2 , H_1 , H_2 be groups. Prove that if $G_1 \cong G_2$ and $H_1 \cong H_2$, then $G_1 \times H_1 \cong G_2 \times H_2$.